or -carbon atoms whereas the second line corresponds to the methylene-hydrogen or -carbon atoms. It is interesting that the methylene proton resonance shifts to higher field as the molecular association increases from dimer to trimer. These data would suggest that the methylene protons have more negative charge due to the inductive effects in a nominally trianionic species compared to a dianionic species. However, further comparisons with Ga(CH₂SiMe₃)₃ in order to determine the effects of oxidation state on NMR chemical shift would not be valid because the coordination number around gallium has changed significantly. In the potassium dimer gallium has an apparent coordination number of 5 whereas in the sodium trimer it is 6, and in $Ga(CH_2SiMe_3)_3$ it is only 3. Similarly, direct comparisons of infrared frequencies assigned to the gallium-carbon stretching modes for the various ((trimethylsilyl)methyl)gallium compounds are also unwarranted.

The behavior of [NaGa(CH₂SiMe₃)₂]₃ and [KGa- $(CH_2SiMe_3)_2]_2$ as Lewis acids toward the Lewis bases diethyl ether, dimethoxyethane, tetrahydrofuran, acetonitrile, and trimethylamine was investigated in order to determine the relative strength and primary site of reaction, the alkali-metal ion or the gallium(I) atom. Our data suggest that [NaGa- $(CH_2SiMe_3)_2]_3$ is the stronger acid and the base reacts primarily with the alkali metal ion. These conclusions are based on the range of bases which form stable 1:1 adducts at room temperature with a given acid and the relative ¹H NMR chemical shift data. The potassium derivative formed a stable adduct with only dimethoxyethane whereas the sodium compound formed adducts with dimethoxyethane, tetrahydrofuran, and trimethylamine. Similarly, the dimethoxyethane protons exhibit larger changes in NMR chemical shifts upon coordination to the sodium compound than those of the potassium compound. However, it is interesting to note that for the bases studied the protons in tetrahydrofuran exhibit the largest change in chemical shift upon coordination, but the magnitude is still small (0.25 ppm downfield) in comparison with the effects of the stronger Lewis acid¹³ [Ga(CH₂SiMe₃)₂Br]₂ (0.47 ppm). It is also noteworthy that the chemical shift of the methyl (N) protons for free N(CH₃)₃ and NaGa- $(CH_2SiMe_3)_2 \cdot N(CH_3)_3$ are identical. All of these data suggest that the base coordinates with the alkali metal ion. If the base had coordinated to the gallium(I), the change in alkali-metal ion should have had a minor effect on the Lewis acidity of the low oxidation state compound. Furthermore, ethers are stronger bases than amines toward the alkali-metal ions

whereas amines are usually stronger bases to gallium.² The anionic character of the $Ga(CH_2SiMe_3)_2^-$ moiety is probably responsible for the weak Lewis acidic behavior. An X-ray structural study²³ of $[NaBe(C_2H_5)_2H \cdot O(C_2H_5)_2]_2$ has shown the ether to be bound exclusively to the sodium ions rather than the beryllium atoms. Reactions of the gallium(I) anions as Lewis bases will be the subject of future publications.

The dimethoxyethane adduct NaGa(CH₂SiMe₃)₂· MeOC₂H₄OMe was further characterized by cryoscopic molecular weight measurements in benzene solution. The apparent molecular weight depends upon the concentration of the solution. At higher concentrations, a molecular weight corresponding to the timer was observed. At the lowest concentration, the degree of association was 1.69. These data would suggest either that an equilibrium between monomer, dimer, and trimer exists in solution or, alternatively, the [NaGa(CH₂SiMe₃)₂]₃ trimer remains intact but has various numbers of bound dimethoxyethane molecules. The lithium derivative LiGa(CH₂SiMe₃)₂·MeOC₂H₄OMe was also prepared, but it was not sufficiently soluble in benzene for molecular weight measurements. Therefore, a structural hypothesis is not warranted at this time.

The successful synthesis of a low oxidation state organometallic anion of gallium opens a new area of chemistry. Periodic trends can be used to predict that analogous compounds might exist for indium and possibly aluminum. Similarly, the available electron pair on the main-group metal atom in the low oxidation state also implies the potential for nucleophilic reaction chemistry. Such aspects of the chemistry of these metal-based anions are being actively pursued.

Acknowledgment. This work was supported in part by the Office of Naval Research. The Varian XL-100 NMR spectrometer was obtained with the aid of a grant from the National Science Foundation. The authors also wish to acknowledge the support of a Samuel B. Silbert Memorial Fellowship to R.G.S.

Registry No. $[NaGa(CH_2SiMe_3)_2]_3$, 74096-67-6; $[KGa-(CH_2SiMe_3)_2]_2$, 74112-96-2; $[NaGa(CH_2SiMe_3)_2 \cdot MeOC_2H_4OMe]_3$, 74081-90-6; $LiGa(CH_2SiMe_3)_2 \cdot MeOC_2H_4OMe$, 74081-92-8; $[NaGa(CH_2SiMe_3)_2 \cdot O(CH_2)_4]_3$, 74081-93-9; $[NaGa-(CH_2SiMe_3)_2 \cdot N(CH_3)_3]_3$, 74096-69-8; $[KGa(CH_2SiMe_3)_2 \cdot MeOC_2H_4OMe]_2$, 74081-95-1; $Ga(CH_2SiMe_3)_3$, 72708-53-3; NaH, 7646-69-7; LiH, 7580-67-8; KH, 7693-26-7.

(23) Adamson, G. W.; Shearer, H. M. M. Chem. Commun. 1965, 240.

Contribution from Rocketdyne, A Division of Rockwell International Corporation, Canoga Park, California 91304

Synthesis and Properties of NF₄⁺SO₃F⁻

KARL O. CHRISTE,* RICHARD D. WILSON, and CARL J. SCHACK

Received February 5, 1980

The novel salt $NF_4^+SO_3F^-$ was prepared by metathesis between NF_4SbF_6 and $CsSO_3F$ in anhydrous HF solution at -78 °C. In HF solution, it is stable at room temperature. Removal of the solvent produces a white solid which is stable at 0 °C but slowly decomposes at +10 °C to produce $FOSO_2F$ and NF_3 in high yield. The ionic nature of the compound, both in the solid state and in HF solution, was established by Raman and ¹⁹F NMR spectroscopy. Cesium sulfate was found to react with anhydrous HF, producing $CsSO_3F$ as the major product. Similarly, $CsPO_2F_2$, the Raman spectrum of which is reported, was found to react with HF to give $CsPF_6$ in quantitative yield.

Introduction

Among oxidizers, the NF_4^+ cation is unique. In spite of being one of the most powerful oxidizers known, it possesses high kinetic stability,¹ thereby permitting its combination with

a surprisingly large number of anions to form stable or metastable salts. Anions capable of NF_4^+ salt formation include

⁽¹⁾ Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, 2572.

 $BF_{4}^{-,2-9} XF_{5}^{-} (X = Ge, Ti, Sn),^{9-11} XF_{6}^{-} (X = P, As, Sb, Bi),^{6,7,9,12-19} XF_{6}^{2-} (X = Ge, Sn, Ti, Ni, Mn),^{9-11,20,21} ClO_{4}^{-,22} HF_{2}^{-,22}$ and several perfluoro polyanions.^{6,10,11,19} Recent studies have shown that NF4⁺ salts of oxygen-containing anions are of particular interest because hypofluorites such as OIF₄OF²³ or FOClO₃²² can be formed during their thermal decomposition.

In this paper we report results on the possible synthesis of salts derived from sulfur or phosphorus oxyfluorides. We are aware of only one unpublished study³ in this area, in which the evolution of some FOSO₂F from either an NF₄SbF₆-H- OSO_2F solution at -78 °C or a supposedly dry mixture of NF₄SbF₆ and LiSO₃F at room temperature was interpreted³ as evidence that NF_4SO_3F , if it exists, is unstable even at -78°C. In view of the relative stability of $NF_4ClO_4^{22}$ and the similarity between ClO_4^- and isoelectronic SO_3F^- and $PO_2F_2^-$, the isolation of NF_4SO_3F and $NF_4PO_2F_2$ seemed possible.

Experimental Section

Materials and Apparatus. The equipment, handling techniques, and spectrometers used in this study have previously been described.²² Literature methods were used for the synthesis of NF₄SbF₆,⁶ ClO- SO_2F ,²⁴ and $HOPOF_2$.²⁵ The CsPO₂F₂ was prepared by the addition of Cs_2CO_3 to a 10% excess of HOPOF₂ frozen at -196 °C. The mixture was allowed to react at room temperature with agitation, and the volatile products and excess HOPOF₂ were pumped off at 40 °C for 12 h. On the basis of observed material balance and vibrational spectra, the solid residue consisted of $CsPO_2F_2$ of high purity. The Cs_2SO_4 was obtained from aqueous Cs_2CO_3 and H_2SO_4 by using a pH electrode for end point (pH 3.86) detection. The solution was taken to dryness and dried in an oven at 100 °C for 24 h. The CsSO₃F was prepared by allowing CsCl (10.3 mmol) and ClOSO₂F (15.5 mmol) to react in a 10-mL stainless-steel cylinder at ambient temperature for several days. All volatile material was removed from the cylinder, and the solid product was pumped on overnight. The weight of the solid (2.43 g vs. 2.40 g theoretical) together with its infrared and Raman spectra confirmed the completeness of the reaction and the identity of the product.

Preparation and Properties of NF_4^+SO_3F^-. The compatibility of

- (2) Goetschel, C. T.; Campanile, V. A.; Curtis, R. M.; Loos, K. R.; Wagner, C. D.; Wilson, J. N. Inorg. Chem. 1972, 11, 1696.
- (3)Tolberg, W. E.; Rewick, R. T.; Zeilenga, G. R.; Dolder, M. P.; Hill, M. E., private communication.
- Sinel'nikov, S. M.; Rosolovskii, V. Ya. Dokl. Akad. Nauk SSSR 1970, (4) 194, 1341
- (5) Rosolovskii, V. Ya.; Nefedov, V. I.; Sinel'nikov, S. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1973, 7, 1445. Christe, K. O.; Schack, C. J.; Wilson, R. D. J. Fluorine Chem. 1976,
- (6) 8.541. (7)
- Christe, K. O.; Wilson, R. D.; Axworthy, A. E. Inorg. Chem. 1973, 12, 2478.
- Mishra, S. P.; Symons, M. C. R.; Christe, K. O.; Wilson, R. D.; Wagner, R. I. *Inorg. Chem.* **1975**, *14*, 1103. Christe, K. O.; Schack, C. J.; Wilson, R. D. *Inorg. Chem.* **1976**, *15*, (8)
- (9) 1275
- Christe, K. O.; Schack, C. J. Inorg. Chem. 1977, 16, 353. Christe, K. O.; Schack, C. J.; Wilson, R. D. Inorg. Chem. 1977, 16, 849. (10)
- (12)Christe, K. O.; Guertin, J. P.; Pavlath, A. E. Inorg. Nucl. Chem. Lett. 1966, 2, 8.
- (13) Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg.
- Nucl. Chem. Lett. 1966, 2, 79. Guertin, J. P.; Christe, K. O.; Pavlath, A. E. Inorg. Chem. 1966, 5, 1921. (14)
- (15)Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg.
- Chem. 1967, 6, 1156. Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1977, 16, 937. (16)Christe, K. O.; Guertin, J. P.; Pavlath, A. E.; Sawodny, W. Inorg. Chem. (17)
- 1967, 6, 533. Christe, K. O.; Pilipovich, D. Inorg. Chem. 1971, 10, 2803. (18)
- Christe, K. O.; Wilson, W. W.; Schack, C. J. J. Fluorine Chem. 1978, (19)
- (20)
- (21)
- Christe, K. O. Inorg. Chem., 1977, 16, 2238. Christe, K. O.; Wilson, W. W., unpublished results. Christe, K. O.; Wilson, W. W.; Wilson, R. D. Inorg. Chem. 1980, 19, (22)1494.
- (23)Christe, K. O.; Wilson, R. D. Inorg. Nucl. Chem. Lett. 1979, 15, 375. (24)
- Schack, C. J.; Wilson, R. D. Inorg. Chem. 1970, 9, 311. Bernstein, P. A.; Hohorst, F. A.; Eisenberg, M.; DesMarteau, D. D. (25) Inorg. Chem. 1971, 10, 1549.

Figure 1. Raman spectra of NF₄⁺SO₃F⁻: upper trace, HF solution at 25 °C; middle trace, neat solid at -100 °C. (Weak bands due to the sample tubes and small amounts of $CsSbF_6$ were substracted from the spectra.); bottom trace, solid CsSO₃F at 25 °C. The spectra were recorded with spectral slit widths of 8, 6, and 4 cm^{-1} , respectively.

Table I. Raman Spectra of NF4SO3F and CsSO3F

obsd fre	q, cm ⁻¹ (rel i	, cm ⁻¹ (rel intens ^a)		ignt
NF ₄ SO ₃ F		CISO F	NE + SO E-	
HF soln	solid	solid	(T_d)	(C_{3v})
	1277 (0.7) 1267 (0.4)	1278 (0.7)		$v_4(E)$
1165 (0.4)	1166 (1.3) 1152 (1.8)		$v_3(\mathbf{F}_2)$	
1087 (6.7) p	1083 (10)	1076 (10)		$\nu_1(A_1)$
853 (10) p	850 (9.5) 749 (1.1) 738 (0.8)	719 (1.2)	$\nu_1(A_1)$	$\nu_2(A_1)$
612 (3)	612 (6)		$\nu_4(F_2)$	
575 (1.2)	584 (1.7) 563 (2.5)	582 (2) 560 (2.2)		$\nu_{5}(E)$ $\nu_{3}(A_{1})$
446 (2.8)	450 (4)		$\nu_2(E)$	0 1
400 (1)	{415 (2.5) {404 (2.3)	406 (3.8) 396 (3.5)		$\left\{ \nu_{6}(\mathbf{E})\right\}$

^a Uncorrected Raman intensities.

the SO₃F⁻ anion with HF was established by dissolving CsSO₃F in dry HF and recording the Raman spectra of the starting material, of the HF solution, and of the solid residue recovered after removal of the solvent. All spectra showed the bands characteristic²⁶ for SO₃F⁻. The ¹⁹F NMR spectrum of the HF solution was also recorded and consisted of a singlet at ϕ -33.8 (downfield from external CFCl₃) for SO₃F⁻ and a relatively narrow HF solvent peak at ϕ 191.

In a typical preparation of NF₄SO₃F, NF₄SbF₆ (3.145 mmol), and CsSO₃F (3.146 mmol) were combined in a previously described²² Teflon metathesis apparatus. Dry HF²² (3 mL of liquid) was added, and the resulting mixture was stirred at ambient temperature for 3 h with a magnetic stirring bar, followed by cooling to -78 °C and

- (26) Ruoff, A.; Milne, J. B.; Kaufmann, G.; Leroy, M. Z. Anorg. Allg. Chem. 1970, 372, 119.
- (27) Franz, G.; Neumayr F. Inorg. Chem. 1964, 3, 921.

1 . 1 .

Table II. Vibrational Spectra of Solid $CsPO_2F_2$ and Their Assignments Compared to Those of SO_2F_2

		obsu freq, cm	(ref intens)				
	$CsPO_2F_2^a$		SO ₂ F ₂ ^b				
	Raman	IR	Raman	IR	assignt (C_{2v})	approx descriptn of mode	
<u></u>	1143 (10)	1142 vs	1270 vs	1270 vs	$A_1 \nu_1$	sym PO ₂ str	
	813 (3.7)	825 vs	848 vs	848 vs	ν,	sym PF, str	
	512 (6)	520 sh	552 m	553 s	ν_{3}	δ scissoring PO.	
	370 sh 353 (5,7)	370 mw 351 mw	384 m	384 vw	ν_4	δ scissoring PF_2	
			$[384 \pm 15]^{c}$		$A_2 \nu_s$	au	
	1318 (0+)	1325 vsv	1504 w	1503 vs	$B_1 \nu_6$	asym PO_2 str	
	501 (2)	494 s	539 m	540 s	ν,	δ rock \mathbf{PF}_{2}	
	851 (0.7) 830 (1.2)	850 sh 825 vs	888 w	886 vs	$\mathbf{B}_2 \mathbf{\nu}_8$	$asym PF_2 str^d$	
	501 (2)	508 s	544 m	544 s	ν_{9}	δ rock PO ₂	

^a Data from this study; uncorrected Raman intensities; since ν_{γ} and ν_{9} have very similar frequencies and intensities, their assignments are tentative. ^b Data from ref 36-38. ^c From microwave data.³⁷ ^d In Fermi resonance with $\nu_{4} + \nu_{9}(B_{2}) = 854 \text{ cm}^{-1}$.

filtration at this temperature. The HF solvent was pumped off from the filtrate at -30 °C for 3 h, leaving behind a white solid residue. The thermal stability of this residue was established by incremental warm-up of the solid in a dynamic vacuum and by trapping, measuring (PVT), and identifying (infrared spectroscopy) the volatile decomposition products. Up to 0 °C, only HF and small amounts of NF3 were collected, indicating the possible presence of small amounts of unstable NF_4HF_2 ·HF²² in the product. At temperatures of 9 °C or higher, significant decomposition of the solid was observed, producing equimolar amounts of NF_3 and $FOSO_2F$. When we allow for about 20% of the product solution to be retained, as generally seems to be the case with similar metathetical reactions,²² by the filter cake and to be lost during solvent pump-off, the yield of NF₃ and FOSO₂F was essentially quantitative. The filter cake (1.0 g, weight calculated for 3.15 mmol of $CsSbF_6 = 1.16$ g) was shown by vibrational spectroscopy to be $CsSbF_6^{28}$ and did not show any detectable impurities.

Caution! FOSO₂F has been reported^{29,30} to have explosive properties. The compound should therefore be handled with appropriate safety precautions.

For the spectroscopic identification of NF_4SO_3F , reactions were carried out on a 1-mmol scale in a previously described²² manner. The ¹⁹F NMR spectrum of a solution of NF_4 +SO₃F⁻ in HF at -30 °C showed the signals characteristic for NF₄⁺ (triplet of equal intensity at ϕ -215 with $J_{\rm NF}$ = 226 Hz and a line width of less than 3 Hz), SO_3F^- (singlet at ϕ -33.5), and HF (broad singlet at ϕ 193). No evidence for the presence of FOSO₂F²⁷ was observed. The Raman spectra of the HF solution at 25 °C and of solid NF₄SO₃F at -100°C were also recorded and are shown in Figure 1. The spectra showed the presence of only small amounts of $CsSbF_6$,²⁸ indicating a purity of NF_4SO_3F in excess of 90 wt %, in agreement with the observed material balance. Raman and ¹⁹F NMR spectra of HF solutions of NF₄SO₃F, which were kept at 25 °C for several days, showed no evidence of FOSO₂F formation.

Reaction of Cs_2SO_4 with HF. The Cs_2SO_4 salt was found to be highly soluble in HF. Raman spectra of these solutions and of the solid residue obtained after the solvent removal showed the complete absence of the SO_4^{2-} anion²⁸ and the presence of the SO_3F^- anion.²⁶ The presence of the SO₃F⁻ anion in the HF solution was confirmed by ¹⁹F NMR spectroscopy which showed a strong singlet at ϕ -33.8, characteristic for SO₃F

Reaction of CsPO_2F_2 with HF. A sample of $CsPO_2F_2$ (2.1 mmol) was treated with anhydrous HF (3 mL of liquid) for 12 h at 25 °C. The white solid residue, left behind after removal of the solvent, was identified by its infrared and Raman spectrum as $CsPF_6^{28}$ (2.1 mmol) and did not contain detectable amounts of $PO_2F_2^{-31-33}$

Results and Discussion

The novel salt $NF_4^+SO_3F^-$ was prepared from NF_4SbF_6 and

CsSO₃F by low-temperature metathesis in anhydrous HF solution according to eq 1. The NF_4SO_3F salt can be isolated

$$NF_4SbF_6 + C_8SO_3F \xrightarrow{HF} C_78 \circ C SSbF_6 \downarrow + NF_4SO_3F$$
 (1)

as a white solid which is stable at 0 °C but slowly decomposes at +10° to produce NF₃ and FOSO₂F in high yield according to eq 2. Its HF solution appears to be stable at ambient

$$NF_4SO_3F \rightarrow NF_3 + FOSO_2F$$
 (2)

temperature. The thermal stability of NF₄SO₃F is very similar to that²² of NF₄ClO₄. This is not surprising since SO₃F⁻ and ClO_4^- are isoelectronic and chemically very similar. This chemical similarity is also demonstrated by their decomposition modes, which in both cases produce the corresponding hypofluorites in high yield.

The decomposition of $NF_4^+SO_3F^-$ represents a new, highyield, convenient synthesis of FOSO₂F. The previously reported methods for the preparation of FOSO₂F involved either the fluorination of $SO_3^{34,35}$ or $S_2O_6F_2$.³⁶ NF₄SO₃F is the third known example of an NF_4^+ salt of an oxyanion producing on thermal decomposition the corresponding hypofluorite. The other two known examples are $NF_4ClO_4^{22}$ and $NF_4IF_4O_2^{23}$ This indicates that the thermal decomposition of unstable $N\tilde{F}_4^+$ salts of oxyanions may be a general method for the synthesis of hypofluorites.

The ionic nature of NF_4SO_3F , both in the solid state and in HF solution, was verified by Raman and ¹⁹F NMR spectroscopy. The Raman spectra are shown in Figure 1 and demonstrate the presence of the bands characteristic for $NF_4^{+9,22}$ and SO_3F^{-26} . The observed frequencies and their assignments are summarized in Table I. The SO₃F⁻ bands in NF₄SO₃F are very similar to those observed for CsSO₃F (see Figure 1). The minor frequency shift observed for the SF stretching mode is not surprising in view of a previous infrared study of the alkali metal salts which showed that the frequency of this fundamental strongly depends on the nature of the cation and varied from 812 cm⁻¹ in LiSO₃F to 715 cm⁻¹ in $CsSO_3F$.²⁶ The observed splitting of some of the modes of both the NF_4^+ cation and the SO_3F^- anion into their degenerate components is easily explained by solid-state effects and has also been observed for $NF_4^+ClO_4^{-.22}$

The ¹⁹F NMR spectrum of NF₄+SO₃F⁻ in HF solution showed a triplet of equal intensity at ϕ -215 with $J_{\rm NF}$ = 226 Hz and a line width of less than 3 Hz, characteristic⁹ for NF_4^+ , a singlet at ϕ -33.5, characteristic for SO₃F⁻, and the char-

(36) Roberts, J. E.; Cady, G. H. J. Am. Chem. Soc. 1959, 81, 4166.

⁽²⁸⁾ Siebert, H. "Anwendungen der Schwingungsspektroskopie in der (26) Stebert, H. Anwendungen der Schwingungsspektroskopten un der Anorganischen Chemie"; Springer-Verlag: Berlin, 1966; Vol. VII.
(29) Lustig, M.; Shreeve, J. M. Adv. Fluorine Chem. 1973, 7, 175.
(30) Cady, G. H., Intra-Sci. Chem. Rep. 1971, 5, 1.
(31) Thompson, R. C.; Reed, W. Inorg. Nucl. Chem. Lett. 1969, 5, 581.
(32) Buehler, K.; Bues, W. Z. Anorg. Allg. Chem. 1961, 308, 62.
(33) Addou, A.; Vast, P. J. Fluorine Chem. 1979, 14, 163.

⁽³⁴⁾ Dudley, F. B.; Cady, G. H.; Eggers, D. F. J. Am. Chem. Soc. 1956, 78, 290. Dudley, J. E.; Cady, G. H. *ibid.* 1959, 81, 4166.
(35) Reference 78, cited by: Lustig, M.; Shreeve, J. M. Adv. Fluorine Chem. 1973. 7. 175.

Figure 2. Raman spectrum of solid CsPO₂F₂ recorded at 25 °C with a spectral slit width of 5 cm⁻¹.

acteristic HF signal at ϕ 193. The assignment of the ϕ -33 signal to SO₃F⁻ was verified by recording the spectrum of CsSO₃F in HF under the same conditions.

In view of the above-mentioned usefulness of NF₄⁺ salts of oxyanions for the preparation of novel hypofluorites, it appeared interesting to attempt the syntheses of (NF₄)₂SO₄ and NF₄PO₂F₂. The thermal decomposition of these two hypothetical salts would offer an opportunity to prepare the yet unknown hypofluorites SO₂(OF)₂ and POF₂(OF). However, both the SO₄²⁻ and PO₂F₂⁻ anions were found to interact with anhydrous HF according to eq 3 and 4. Attempts to prepare

$$SO_4^{2-} + 3HF \rightarrow SO_3F^- + H_2O + HF_2^-$$
 (3)

$$PO_2F_2^- + 4HF \rightarrow PF_6^- + 2H_2O \tag{4}$$

 $POF_2(OF)$ by fluorination of $HOPOF_2$ with atomic fluorine, generated by the controlled decomposition of $NF_4HF_2 \cdot nHF_2^{22}$ were also unsuccessful. The main products were $NF_4PF_6^{9}$ and an unidentified nonvolatile phosphorus oxyfluoride.

Although vibrational spectra have been reported³¹⁻³³ for the PO₂F₂⁻ anion, the previous assignment of several fundamentals is open to question. Figure 2 and Table II summarize the vibrational spectra of CsPO₂F₂, obtained in our study. The given assignment was made by analogy with that of isoelectronic SO₂F₂ which is well established.³⁷⁻³⁹ Whereas, the splitting of $\nu_8(B_2)$ can easily be explained by Fermi resonance with $(\nu_4 + \nu_9)(B_2)$, the reason for the observed splitting of ν_4 is less obvious. The possibility of one of the components assigned to ν_4 actually being due to the $\nu_5(A_2)$ torsional mode cannot be infrared inactive under $C_{2\nu}$ selection rules and usually is of such low intensity in the Raman spectra that it is very difficult to observe.

In summary, the present study shows that within the isoelectronic series ClO_4^- , SO_3F^- , $PO_2F_2^-$, SO_4^{2-} , the first two anions are capable of forming NF₄⁺ salts of moderate stability which can decompose to NF₃ and the corresponding hypofluorites. The syntheses of NF₄PO₂F₂ and (NF₄)₂SO₄ by metathesis in HF were prevented by the reaction of PO₂F₂⁻ and SO₄⁻ with the solvent to yield PF₆⁻ and SO₃F⁻, respectively.

Acknowledgment. The authors thank Drs. L. R. Grant and W. W. Wilson for helpful discussions and the Office of Naval Research, Power Branch, and the Army Research Office for financial support of this work.

Registry No. $NF_4^+SO_3F^-$, 74096-76-7; $CsSO_3F$, 13530-70-6; $CsPO_2F_2$, 17117-59-8; NF_4SbF_6 , 16871-76-4; NF_3 , 7783-54-2; $FOSO_2F$, 13536-85-1; Cs_2SO_4 , 10294-54-9; $CsPF_6$, 16893-41-7.

(37) Lide, D. R.; Mann, D. E.; Comeford, J. J. Spectrochim. Acta 1965, 21, 497 and references cited therein.

- (38) Sportouch, S.; Clark, R. J. H.; Gaufres, R. J. Raman Spectrosc. 1974, 2, 153.
- (39) Nolin, C.; Tremblay, J.; Savoie, R. J. Raman Spectrosc. 1974, 2, 71.

Contribution from the Department of Chemistry, College of William and Mary, Williamsburg, Virginia 23185

Peroxo- and Hydroxolanthanide(III) Complexes of the EDTA Family

CIRILA DJORDJEVIC* and NIKOLA VULETIC

Received August 7, 1979

Three series of crystalline heteroligand lanthanide complexes with EDTA are reported. The new compounds have been characterized by infrared and proton NMR spectra, conductivity in aqueous solution, and powder X-ray photographs. Two of the series contain peroxides. The complexes of the type KLnEDTA· xH_2O_2 · yH_2O (x = 0.5, y = 4 for Ln = Y; x = 0.5, y = 6 for Ln = Eu, Gd; x = 2, y = 5 for Ln = La, Nd) are obtained from neutral or weakly acid solutions. Some of them are considered to be peroxo hydrates because of the easy release of peroxo oxygen. The complexes of the second type, obtained from alkaline solutions, K₃Ln(O₂)EDTA· yH_2O (y = 3 for Ln = Y; y = 6 for Ln = La, Nd) and K₃Ln(O₂). EDTA· xH_2O_2 · yH_2O (x = 1, y = 5 for Ln = Eu, Gd), contain one peroxo group which is retained on prolonged heating in vacuo, implying the presence of a coordinated peroxo ligand. The infrared spectra support this evidence by showing an additional band between 840 and 825 cm⁻¹, expected for the stretching of a coordinated peroxo group. These monoperoxo-EDTA complexes represent the first crystalline stoichiometric perox compounds of rare earths. Molar conductivity of these salts in water indicates the presence of 1/1 and 3/1 electrolytes, respectively, and powder photographs reveal isomorphous pairs dependent upon the degree of hydration. The third series of complexes. According to powder X-ray patterns show a more complex resonance pattern than the spectra of peroxo-EDTA complexes. According to powder X-ray patterns the Ln = Y, La, Eu, and Gd complexes are isomorphous.

Introduction

The peroxo derivatives of lanthanides reported to exist in the solid state so far are poorly characterized oxohydroxolanthanum(III) hydrates, containing Ln/peroxide ratios of 1/1and 1/2. They are stable at lower temperature only, cannot be dehydrated without loss of oxygen, and decompose at room temperature.^{1,2} Some spectrophotometric solution studies do

 Y. A. Connor and E. A. V. Ebsworth, Adv. Inorg. Chem. Radiochem., 6, 279 (1964).